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1. Introduction

Micrometeoroids and orbital debris (MMOD) are known threats to spacecraft. Impacts can result in
plasma discharges, penetration of the spacecraft, sudden electrical disturbances (SEDs), RF transients,
gyro-destabilizations, pointing anomalies, and other effects. Modem spacecraft are relatively well
shielded from small particles (<1 lim in diameter), but the much less common larger particles are still
a concern.

Any surface exposed in space is subject to impact from the background particles that are passing
through the near-Earth environment. For large objects, anything that hits the primary satellite is
probably going to be catastrophic, and even if the primary is not destroyed, it's going to suffer serious
damage. Risk assessment in this case is concerned with computing and possibly reducing the prob-
ability of collision, Pc. For small particles, however, the issue is not whether the primary satellite is
going to be hit or not. That is inevitable. The question for small particles is whether they penetrate
the surface of the satellite and cause damage. Risk assessment for small particles then involves com-
puting the probability of penetration, Pp. (Equivalently, the probability of no penetration, PNP, is
often used in the literature.) Therefore, for small particles (micrometeoroids and orbital debris, or
MMOD), the relevant parameter describing the MMOD environment is not simply the number of
particles (i.e., flux), but also the velocity (magnitude and direction) and density (or mass).

Micrometeoroids are small particles produced by comets and asteroids that are composed of small
micron-sized grains containing a core of denser silicate material surrounded by ice attached together
through additional icy material. Micrometeoroids have been a threat to spacecraft in the past; in
1991, the Solar A spacecraft lost its optical telescope due to a particle puncturing the sun shade, and
in 1993, control of Olympus I was lost when a Perseid meteoroid caused an electromagnetic pulse
that convinced the satellite it had lost its lock on the Sun. Olympus I was then commanded into an
automatic search for the Sun, and by the time operators realized this was unnecessary, almost all of
the fuel had been exhausted, and the satellite had to be disposed. This is an important lesson for all
operators and analysts: an unwarranted over-reaction can pose as great a risk to the mission as an
actual impact.

The man-made orbital debris (OD) environment, like micrometeoroids, is also characterized by the
flux, velocity, and density of the particles. In some respects, the OD modeling is more accurate than
MM simply due to the fact that the space community is very aware of what is being put into orbit. In
other respects, the modeling is more difficult since more (and more highly variable) sources go into
the environment modeling than simple icy or silicate particles.

The fluxes for the micrometeoroid (MM) and orbital debris (OD) environments are similar for parti-
cles smaller than about 1 cm in diameter; for particles larger than this, the orbital debris flux becomes
dominant over the micrometeoroids. However, the density and velocity distribution of the two envi-
ronments can differ considerably, and this impacts just how dangerous the two populations are. The
OD threat is assumed to primarily consist of metallic objects with a mean density close to aluminum



(2.8 g/cm 3) while the MM particles are composed mostly of ice with density ranging from 0.5 to 2
g/cm 3. These densities may be adequate to describe the bulk of OD and MM particles, but it is known
that not all OD is composed of aluminum (and the shape of the particles can substantially deviate
from spherical), and some meteoroid particles can be composed mostly of iron with densities
approaching 8 g/cm 3. Similarly, the velocity for debris ranges from 6 to 16 km/s while meteoroids
can have velocities in excess of 70 km/s. As a consequence of the greater kinetic energy of impact,
smaller micrometeoroids can have as big a negative influence on ISS and STS as larger orbital debris
particles.

In Figures 1 through 3, the fluence (flux) is shown as number of particles that impact a surface in
space per square meter of that surface per year as a function of particle diameter in cm. These num-
bers refer to all particles whose diameters are equal to or greater than the indicated diameter. This
includes those that approach obliquely, i.e., not perpendicular to the surface.

From a damage standpoint, the most important property of the particle is not its diameter, D, but
rather its kinetic energy, EK.

EK= mV2 ,

where V is speed, and mass m is

m = p * volume = p 4/3n(D/2)3 for a spherical particle.

MMOD particles can have densities that range from less than unity (cometary particles) to greater
than 7-8 g/cm3 (iron-nickel micrometeroids). The most common particles have densities in the
neighborhood of 2-3 g/cm 3.
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2. MMOD Model Predictions

Figure I shows the average man-made orbital debris particle flux for the year 2007 for the Interna-
tional Space Station (ISS), assuming an average altitude of 350 km and inclination of 51.60. There
are four models shown: ORDEM96 and ORDEM2000 (both produced by NASA's Johnson Space
Center, respectively, in the years 1996 and 2000), and MasterO I and Master05 (both produced by the
European Space Agency in the years 2001 and 2005). Note that MasterO1 and ORDEM96 have been
replaced by the newer models and are no longer supported by their organizations. However, Mas-
terO I and ORDEM96 agree much better with each other than any other pair of models, and a com-
parison between the newer ORDEM2000 and MasterO5 shows the widest discrepancy. In general,
ORDEM2000 produces the largest fluxes for particles smaller than about 3-4 mm, and the smallest
fluxes for particles larger than -5 mm. Master05, on the other hand, produces the smallest fluxes for
particles smaller than 5 mm while being comparable to MasterO I and ORDEM96 for the larger parti-
cles. Some of these differences have to do with how ORDEM2000 and Master05 are generated.
ORDEM2000 is a largely empirical model constructed from data retrieved from STS, HST, LDEF,
and ISS data, and was specifically created to conduct risk assessment for those altitude regions; to get
fluxes for altitudes and inclinations beyond the ISS/STS regime, theoretical extrapolations are used.
Conversely, Master05 is a theoretical model based upon frequency and expected composition of
breakup and debris-shedding events and covers the entire near-Earth altitude regime; Master05 is then
adjusted based upon empirical data. A new ORDEM model is expected shortly and will be evaluated
when it becomes available.

Average Orbital Debris Environment for ISS for year 2007
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Figure 1. Orbital debris particle fluxes from various models.
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Figure 2 shows the average micrometeoroid particle flux for several different models. "D/S" stands
for the Divine/Staubach model that is implemented in either the MasterO 1 or Master05 models. Nei-
ther ORDEM model contains a micrometeoroid component; to perform micrometeoroid threat
assessment, NASA currently utilizes a model presented in document SSP 30425 (Boeder 1994),
although it is planned that SSP will be superceded by Marshall Space Flight Center's Micrometeoroid
Engineering Model (MEM) once work is completed on that project. For the particle flux, the SSP is
essentially equivalent to the widely referenced Grin meteoroid model modified for the gravitational
attraction of the Earth. The difference between micrometeoroid models is not as pronounced as the
difference between the orbital debris models.

The above calculations do not include the as yet unknown change in OD particle number and distri-
bution due to the recent Chinese ASAT experiment. Such events are certain to increase the number
of orbiting particles. Some people have suggested that a relative small number of explosions in LEO
can eventually render LEO space uninhabitable for satellites because one large particle can cause an
explosion that leads to further particles that hit more spacecraft until a runaway situation is reached.

There is an additional factor involved when choosing a meteoroid model to use that one should be
aware of. In the Divine/Staubach models as implemented in Master, slight discontinuities appear at
certain altitude boundaries. The reason for this is unknown, but both MasterO 1 and Master05 show
this behavior. It is not known whether there is an issue with the Divine/Staubach model itself, the
implementation in Master, or user error. Figure 3 shows the Divine/Staubach flux for 1 mm and 1 cm
particles as compared to the Grn model adjusted for Earth's gravity; the discontinuities are consis-
tently present regardless of particle size. They are not large in magnitude, but users should be aware
they exist.
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Figure 2. Micrometeoroid particle fluxes from various models.
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3. Recommendations

For the MM, the recommendation is to utilize the GrUn model (multiplied by 2 to be conservative and
adjusted for Earth's gravity) since it gives smooth behavior, and, since GrIn is analytic, it is very easy
to implement.

For the OD, the best practice is to use both Master05 and Ordem2000 and present the results as a
range of values. For particles larger than -I cm, the two models are in fairly good agreement,
although ORDEM2000 produces lower fluxes by less than an order of magnitude; however, for sub-
cm particles, they diverge substantially, and the range of produced values can be 2 orders of magni-
tude, with ORDEM2000 now producing higher values.
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